

9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

BINARY OPERATIONS

& Their Properties

7.	CONTENTS
Key Concept-I	***************************************
Exercise-I	***************************************
Exercise-II	***************************************
Exercise-III	••••••
	Solutions of Exercise
Page	

By: Dir. Firoz Ahmad

THINGS TO REMEMBER

- A binary operation on a set S is a function from $S \times S$ to S. 1. A binary operation * on a set S associates any two elements a, $b \in S$ to a unique element a * $b \in S$
- A binary operation * on a set S is said to be 2.
 - commutative, if a * b = b * a for all $a, b \in S$.
 - associative, if (a * b) * c = a * (b * c) for all a, b, $c \in S$.
 - (iii) distributive over a binary operation o on S, if a * (b o c) = a(* b) o (a * c)
 - and $(b \circ c) * a = (b * a) \circ (c * a)$ for all $a, b \in S$
- Let * be a binary operation on a set S. An element $e \in S$ is said to be identity element for the binary 3. operation *, if a * e = a = e * a for all $a \in S$.
- 4. Let * be a binary operation on a set S and $e \in S$ be the identity element. An element $a \in S$ is said to be invertible, if there exists on element $b \in S$ such that a * b = e = b * a
- 5. A binary operation on a finite set can be completely described by means of composition table. From the composition table, we can infer the following properties of the binary operation:
 - The binary operation is commutative if the composition table is symmetric about the leading diagonal.
 - (ii) If the row headed by an element say e coincides with row at the top and the column headed by e coincides with the column on the extreme left, then e is the identity element.
 - (iii) If each row, except the top-most row, or each column, except the left-most column, contains the identity element. Then, every element of the set is invertible with respect to the given binary operation.
- Total number of binary operations on a set consisting of n elements is n^{n^2} . 6.

Total number of commutative binary operations on a set consisting of n elements is n^{-2} .

EXERCISE-1

- 1. Let S be a non-empty set and P(S) be its power set. For any two subsets A and B of S, we know that $A \cup B \subset S$. That is, for any two elements of P(S), we have $A \cup B \in P(S)$. Therefore, ' \cup ' is a binary operation on P(S)
- Let $S = \{a + \sqrt{2}b : a, b \in Z\}$. Then, prove that an operation * on S defined by 2.

$$(a_1 + \sqrt{2}b_1)*(a_2 + \sqrt{2}b_2) = (a_1 + a_2) + \sqrt{2}(b_1 + b_2)$$
 fo all $a_1, b_1, a_2, b_2 \in Z$.

is binary operation on S.

- Let M be the set of all singular matrices of the form $\begin{bmatrix} x & x \\ x & x \end{bmatrix}$, where x is a non-zero real number. 3. On M, let * be an operation on M.
- 4. Is * defined on the set $\{1, 2, 3, 4, 5\}$ by a * b = LCM of a and b a binary operation? Justify your answer.

- 5. Discuss the commutativity and associativity of the binary operation "*" on R defined by a * b = a + b + ab for all a, b ∈ R

 there on RHS we have usual addition, subtraction and multiplication of real numbers.
- 6. Discuss the commutativity and associativity of the binary operation * on R defined by

$$a * b = \frac{ab}{4}$$
 for all $a, b, \in R$

- 7. Discuss the commutativity and associativity of binary operation '*' defined on Q by the rule a * b = a b + ab for all $a, b \in Q$.
- 8. Let A be a non-empty set and S be the set of all functions from A to itself. Prove that the composition of functions 'o' is a non-commutative binary operation on S. Also, prove that 'o' is an associative binary operation on S.
- 9. Let A = N × N and '*' be a binary operation on A defined by

 (a, b) * (c, d) = (ac, bd) for all a, b, c, d ∈ N.

 Show that '*' is commutative and associative binary operation on A.
- 10. Let A be a set having more than one element. Let '*' be a binary operation on A defined by a * b = a for all a, b ∈ A.
 Is '*' commutative or associative on A?
- 11. Let '*' be a binary operation on N, the set of natural numbers, defined by $a * b = a^b$ for all $a, b \in N$.

Is '*' associative or commutative on N?

- 12. Let '*' be a binary operation on N given by a * b = HCF(a, b), $a, b \in N$
 - (i) Find: 12 * 4, 18 * 24, 7 * 5
 - (ii) Check the commutativity and associativity of '*' on N.
- 13. Consider the binary operations $*: R * R \to R$ and $o: R \times R \to R$ defined as a * b = |a b| and aob = a for all $a, b \in R$.

Show that * is commutative but not associative, o is associative but not commutative. Further show that * is distributive over o. Does o distribute over *? Justify your answer.

- 14. Determine which of the following binary operations are associative and which are commutative:

 (i) * on N defined by a * b = 1 for all a, $b \in N$
 - (ii) * on Q defined by a * $b = \frac{a+b}{2}$ for all a, $b \in Q$.
- 15. Let '*' be a binary operation on a set S. If there exists an element e ∈ S such that a * e = a = e * a for all a ∈ S.
 Then, e is called an identity element for the binary operation '*' on set S.
- 16. Let '*' be a binary operation on a set S. If S has an identity element for '*', then it is unique.
- 17. If * is defined on the set R of all real numbers by a * $b = \sqrt{a^2 + b^2}$, find the identity element in R with respect to *.
- 18. Let '*' be an associative binary operation on a set S with the identity element e in S. Then, the inverse of an invertible element is unique.

By : Dir. Firoz Ahmad

- 19. Let * be an associative binary operation on a set S and a be an invertible element of S. Then, $(a^{-1})^{-1} = a$
- On Q, the set of all rational numbers, a binary operation * is defined by 20.

$$a * b = \frac{ab}{5}$$
 for all $a, b \in Q$.

21. Let '*' be a binary operation on Q₀ (set of all non-zero rational numbers) defined by

$$a * b = \frac{ab}{4}$$
 $a, b \in Q_0$.

Then, find the

- Identity element in Q₀
- (ii) inverse of an element in Q_0 .
- Let X be a non-empty set and let '*' be a binary operation on P(X) (the power set of X) defined by 22. $A * B = A \cap B \text{ for } A, B \in P(X)$
- Let X be a non-empty set and let '*' be a binary operation on P(X) (the power set of set X) defined 22.

$$A * B = (a - B) \cup (B - A)$$
 for all $A, B \in P(X)$

Let $A = Q \times Q$ and let * be a binary operation on A defined by

$$(a, b) * (c, d) = (ac, b + ad)$$
 for $(a, b), (c, d) \in A$.

Then, with respect to * on A

- Find the identity element in A
- (ii) Find the invertible elements of A.
- Let $A = N \cup \{0\} \times N \cup \{0\}$ and let '*' be a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d) for $(a, b), (c, d) \in A$.

Show that:

- "' is commutative on A. (i)
- (ii) '*' is associative on A.
- Show that the number of binary operations on {1, 2} having 1 as identity and having 2 as inverse of 2 is exactly one.
- Determine the total number of binary operations on the set $S = \{1, 2\}$. Then, * is a function from $S \times S = \{(1, 1), (1, 2), (2, 1), (2, 2)\} \text{ to } S = \{1, 2\}.$
- Let 'o' be a binary operation on the set Q₀ of a non-zero rational numbers defined by

a o b =
$$\frac{ab}{2}$$
, for all a, b, $\in Q_0$.

- Show that 'o' is both commutative and associate. (i)
- (ii) Find the identity element in Q_0 .
- (iii) Find the invertible elements of Q₀.
- Let * be a binary operation on Z defined by a * b = a + b - 4 for all $a, b, \in Z$
 - Show that 'o' is both commutative and associative. (i)
 - (ii) Find the identity element in Z.
 - (iii) Find the invertible elements of Z.

29. Let * be the binary operation on N defined by

a * b = HCF of a and b.

Does there exist identity for this binary operation one N?

30. Let * be a binary operation on Q_0 (set of non-zero rational numbers) defined by

$$a * b = \frac{3ab}{5}$$
 for all $a, b \in Q_0$.

- 31. Consider the set $S = \{1, -1\}$ of square roots of unity and multiplication (×) as a binary operation on S. Construct the composition table for multiplication (×) on S. Also, find the identity element for multiplication on S and the inverses of various elements.
- 32. Consider the set $S = \{1, -1, i, -i\}$ of fourth roots of unity. Construct the composition table for multiplication on S and deduce its various properties.
- 33. Consider the set $S = \{1, 2, 3, 4\}$. Define a binary operation * on S as follows: a * b = r, where r is the least non-negative remainder when ab is divided by 5. Construct the composition table fo '*' on S.
- 34. Construct the composition table for the composition of functions (o) defined on the set $S = \{f_1, f_2, f_3, f_4\}$ of four functions from C (the set of all complex numbers) to itself, defined by

$$f_1(z) = z, \ f_2(z) = -z, \ f_3(z) = \frac{1}{z}, \ f_4(z) = -\frac{1}{z} \ \text{ for all } z \in C.$$

35. Consoder the infimum binary operation $^{\circ}$ on the set S = {1, 2, 3, 4, 5} defined by a $^{\circ}$ b = Minimum of a and b.

Write the composition table of the operation ^.

36. Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table

* 1 2 3 4 5 1 1 1 1 1 1 2 1 2 1 3 1 1 2 1 3 1 1 3 1 1 4 1 2 1 4 1 5 1 1 1 1 5					, , , , ,	_
1 1 1 1 1 2 1 2 1 2 1 3 1 1 3 1 1 4 1 2 1 4 1	*	1	2	3		
4 1 2 1 4 1	1	1	1	1	1	1
4 1 2 1 4 1	2	1	2	1	2	1
	3	1	1	3	1	1
5 1 1 1 1 5	4	1	2	1	4	1
	5	1	1	1	1	5

- (i) Compute (2 * 3) * 4 and 2 * (3 * 4)
- (ii) Is * commutative?
- (iii) Compute (2 * 3) * (4 * 5)
- 37. Define a binary operation * on the set $A = \{0, 1, 2, 3, 4, 5\}$ as $a * b = a + b \pmod{6}$

Show that zero is the identity for this operation and each element a of the set is invertible with 6 – a being the inverse of a.

38. Define a binary operation * on the set $\{0, 1, 2, 3, 4, 5\}$ as

$$a * b = \begin{cases} a + b, & \text{if } a + b < 6 \\ a + b - 6, & \text{if } a + b \ge 6 \end{cases}$$

Show that 0 is the identity for this operation and each element $a \ne 0$ of the set is invertible with 6 – a being the inverse of a.

39. Define a binary operation of 4.

By : Dir. Firoz Ahmad

40.	Write the identity element for the binary operation * defined on the set R of all real numbers by the
	rule

$$a * b = \frac{3ab}{7}$$
 for all $a, b \in R$

$$a * b = \frac{ab}{5}$$
 for all $a, b \in R - \{0\}$

42.	Write the composition table for the binary operation multiplication module
	$10 (\times_{10})$ on the set $S = \{2, 4, 6, 8\}$

Let * be a binary operation defined by a * b = 3a + 4b - 2. Find 4 * 5.

Let * be a binary operation on N given by a * b = HCF(a, b), $a, b \in N$. Write the value of 22 * 4.

EXERCISE-3

1.	An operation * is defined on the set Z of non-zero integers by a * $b = \frac{a}{b}$ for all a, $b \in Z$. Then the			
	property satisfied is (a) closure	(b) commutative	(c) associative	(d) None of these
2.	Let * be a binary operation	n on Q ⁺ defined by a * b	$= \frac{ab}{100} \text{ for all a, b } \in Q^+.$	The inverse of 0.1 is
	(a) 10^5	(b) 10^4	(c) 10^6	(d) non-existent

Consider the binary operation * defined on $Q - \{1\}$ by the rule 3. a * b = a + b - ab for all $a, b, \in Q - \{1\}$

The identity element in $Q - \{1\}$ is

(a) 0 (b) 1 (c)
$$\frac{1}{2}$$
 (d) -1

For the multiplication of matrices as a binary operation on the set of all matrices of the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}, a, b \in R \text{ the inverse of } \begin{bmatrix} 2 & 4 \\ -3 & 5 \end{bmatrix} \text{ is}$$

(a)
$$\begin{bmatrix} -2 & 3 \\ -3 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 2/13 & 3/13 \\ 3/13 & 2/13 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

On the set Q⁺ of all positive rational numbers a binary operation * is defined by a * b = $\frac{ab}{2}$ for all 5. a, b, \in Q⁺. The inverse of 8 is

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{2}$ (c) 2

The number of binary operations that can be defined on a set of 2 elements is

For the binary operation * on Z defined by a * b = a + b + 1 the identity element is 7. (a) 0 (b) -1(c) 1 (d) 2