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THINGS TO REMEMBER

A binary operation on a set S is a function from S x S to S.
A binary operation * on a set S associates any two elements a, b € S to a unique elementa * b €
S.

A binary operation * on a set S is said to be

(i) commutative,ifa*b=Db*aforalla, be S.

(ii) associative, if (a *b) *c=a* (b* c)foralla, b, c € S.

(iii) distributive over a binary operation o on S, if
a*(oc)=a(*b)o(a*c)

and (boc)*a=(b*a)o(c*a) foralla,beS

Let * be a binary operation on a set S. An element e € S is said to be identity element for the binary

operation *,ifa*e=a=e*aforalla e S.

Let * be a binary operation on a set S and e € S be the identity element. An element a € S is said

to be invertible, if there exists on element b € S such that
a*b=e=b*a

A binary operation on a finite set can be completely described by means of composition table.

From the composition table, we can infer the following properties of the binary operation :

(i) The binary operation is commutative if the composition table is symmetric about the leading
diagonal.

(ii) If the row headed by an element say e coincides with row at the top and the column headed
by e coincides with the column on the extreme left, then e is the identity element.

(iii) If each row, except the top—most row, or each column, except the left—-most column, contains
the identity element. Then, every element of the set is invertible with respect to the given
binary operation.

Total number of binary operations on a set consisting of n elements is .

n(n-1)
2

Total number of commutative binary operations on a set consisting of n elements is n
EXERCISE-1

Let S be a non-empty set and P(S) be its power set. For any two subsets A and B of S, we know
that A U B < S. That is, for any two elements of P(S), we have A U B € P(S). Therefore, ‘U’ is a
binary operation on P(S)

LetS = {a +/2b: a,be Z}. Then, prove that an operation * on S defined by

(a1+\/§b1)*(a2 +\/§b2)=(a1 +a2)+ﬁ(bl +b2) foalla, b, a,b, eZ

is binary operation on S.

X X
Let M be the set of all singular matrices of the form [x x} , where X is a non—zero real number.

On M, let * be an operation on M.

Is * defined on the set {1, 2, 3,4, 5} by a * b=LCM of a and b a binary operation ? Justify your
answer.
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Discuss the commutativity and associativity of the binary operation ™" on R defined by
a*b=at+b+abforalla,beR

" there on RHS we have usual addition, subtraction and multiplication of real numbers.

Discuss the commutativity and associativity of the binary operation * on R defined by

ab
4

Discuss the commutativity and associativity of binary operation ‘** defined on Q by the rule
a*b=a-b+abforalla,be Q.

Let A be a non—empty set and S be the set of all functions from A to itself. Prove that the compo-

sition of functions ‘o’ is a non—commutative binary operation on S. Also, prove that ‘0’ is an

associative binary operation on S.

Let A=N x N and ‘*’ be a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all a, b, ¢, d € N.

Show that ‘*’ is commutative and associative binary operation on A.

Let A be a set having more than one element. Let **’ be a binary operation on A defined by
a*b=aforalla, b e A.

Is “*’ commutative or associative on A ?

a*b= forall a, b, e R

Let “** be a binary operation on N, the set of natural numbers, defined by
a*b=abforalla, b e N.
Is “*’ associative or commutative on N ?
Let ** be a binary operation on N given by
a*b=HCF (a,b), a,be N
(i) Find:12*4,18*24,7%*5
(i)) Check the commutativity and associativity of ™" on N.
Consider the binary operations * : R * R >R ando: R xR — R defined asa* b=|a—b | and
aob=aforalla, b € R.
Show that * is commutative but not associative, o is associative but not commutative. Further
show that * is distributive over o. Does o distribute over * ? Justify your answer.

Determine which of the following binary operations are associative and which are commutative :

(i) *onNdefinedbya*b=1foralla,be N

a+b
> foralla,b € Q.

(i) *on Q definedbya* b=

Let “*’ be a binary operation on a set S. If there exists an element e € S such that
a*e=a=e*aforallaeS.
Then, e is called an identity element for the binary operation ‘*’ on set S.

Let “*’ be a binary operation on a set S. If S has an identity element for ‘*’, then it is unique.

If * is defined on the set R of all real numbers by a * b = va®+b’ | find the identity element in R
with respect to *.

Let “** be an associative binary operation on a set S with the identity element e in S. Then, the
inverse of an invertible element is unique.
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Let * be an associative binary operation on a set S and a be an invertible element of S. Then,
@' =a

On Q, the set of all rational numbers, a binary operation * is defined by

ab
a*b=—5—fora11a,beQ.

Let “** be a binary operation on Q, (set of all non—zero rational numbers) defined by

ab
a*b=—4- a,be Q

Then, find the
(i) Identity element in Q,
(i) inverse of an element in Q.
Let X be a non—empty set and let ** be a binary operation on P(X) (the power set of X) defined by
A*B=AnBforA, B e PX)
Let X be a non—empty set and let ‘*’ be a binary operation on P(X) (the power set of set X) defined
by
A*B=@-B)uB-A)forall A, B € P(X)
Let A= Q x Q and let * be a binary operation on A defined by
(a, b) * (c, d) =(ac, b+ ad) for (a, b), (c, d) € A.
Then, with respect to * on A
(i) Find the identity element in A
(i) Find the invertible elements of A.
Let A=N U {0} x N U {0} and let ‘*’ be a binary operation on A defined by
(a,b) * (c,d)=(at c,b+d) for(a, b), (c,d) € A.
Show that :
(i) °* is commutative on A.
(i) “*’ is associative on A.
Show that the number of binary operations on {1, 2} having 1 as identity and having 2 as inverse
of 2 is exactly one.
Determine the total number of binary operations on the set S = {1, 2}. Then, * is a function from
SxS={(1,1),(1,2),2,1),(2,2)} toS={1,2}.
Let ‘0’ be a binary operation on the set Q, of a non—zero rational numbers defined by

ab
aob= T,forall a, b, € Q,.

(i) Show that ‘0’ is both commutative and associate.

(i) Find the identity element in Q,.

(iii) Find the invertible elements of Q,.

Let * be a binary operation on Z defined by
a*b=at+b-4foralla,b, € Z

(i) Show that ‘0’ is both commutative and associative.

(ii) Find the identity element in Z.

(iii) Find the invertible elements of Z.
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29. Let * be the binary operation on N defined by
a* b=HCF of aandb.
Does there exist identity for this binary operation one N ?

30. " Let * be a binary operation on Q, (set of non-zero rational numbers) defined by

3ab
a*b=—5-foralla,beQ0.

31. Consider the set S = {1, —1} of square roots of unity and multiplication (x) as a binary operation on
S. Construct the composition table for multiplication (x) on S. Also, find the identity element for
multiplication on S and the inverses of various elements.

32. Consider the set S = {1, —1, i, —i} of fourth roots of unity. Construct the composition table for
multiplication on S and deduce its various properties.

33. Consider the set S = {1, 2, 3, 4}. Define a binary operation * on S as follows :

a * b =r, where r is the least non—negative remainder when ab is divided by 5.
Construct the composition table fo ‘** on S.

34. Construct the composition table for the composition of functions (o) defined on the set S = {f,, &,

f;, £,} of four functions from C (the set of all complex numbers) to itself, defined by

1 1
t@ =2z @ =-2@=",{z=-—7 for all z € C.

35.  Consoder the infimum binary operation * on the set S = {1, 2, 3, 4, 5} defined by
a ™ b = Minimum of a and b.
Write the composition table of the operation ~.

36. Cons1der a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table

Il 2 3 4 5
I 1 1 1 il 1
2 1 2 ) 2 1
3 1 | 3 1 |
4 1 2 1 4 1
5 1 1 1 1 5

(i) Compute (2*3)*4and2 * (3 * 4)
(i) Is * commutative ?
- (ii1) Compute (2 * 3) * (4 * 5)
37. Define a binary operation * on the set A= {0, 1, 2, 3, 4, 5} as
a*b=a+b(mod6)
Show that zero is the identity for this operation and each element a of the set is invertible with 6 —
a being the inverse of a.

38. Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as
a¥b = a+b, %fa+b<6
a+b-6,ifa+b>6

Show that 0 is the identity for this operation and each element a # 0 of the set is invertible with 6
— a being the inverse of a.

39. Define a binary operation of 4.
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Write the identity element for the binary operation * defined on the set R of all real numbers by the
rule

3ab
a*b=—7—foralla,beR

Let * be a binary operation, on the set of all non—zero real numbers, given by

ab
a*b=?foralla,beR—{0}

Write the composition table for the binary operation multiplication modulo

10 (x,,) on the set S = {2, 4, 6, 8}

Let * be a binary operation defined by a * b = 3a + 4b — 2. Find 4 * 5.

Let * be a binary operation on N given by a * b = HCF (a, b), a, b € N. Write the value of 22 * 4.

EXERCISE-3

a
An operation * is defined on the set Z of non—zero integers by a * b = 5 for all a, b € Z. Then the

property satisfied is

(a) closure (b) commutative (c) associative (d) None of these
ab ,

Let * be a binary operation on Q" defined by a * b = mfor all a, b € Q. The inverse of 0.1 is

(@) 10° (b) 10* (c) 106 (d) non—existent

Consider the binary operation * defined on Q — {1} by the rule
a*b=at+tb-abforalla,b, € Q- {1}
The identity element in Q — {1} is

1
GV (b) 1 © 3 (d) -1

For the multiplication of matrices as a binary operation on the set of all matrices of the form

a b 2 4
b a , a, b € R the inverse of 3 5 is

-2 3 2 3 2/13 3/13 1 0
@ | 3 5 Q3 2 ©3/13 2/13 Do 1
.. : : . ab
On the set Q* of all positive rational numbers a binary operation * is defined by a * b = o1 for all

a, b, € Q". The inverse of 8 is

1 1
@ 5 b) 5 ©2 (@ 4
The number of binary operations that can be defined on a set of 2 elements is
(a 8 (b) 4 (c) 16 (d) 64
For the binary operation * on Z defined by a * b =a + b + 1 the identity element is
(2) 0 (b) -1 (©) 1 (d) 2
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